蓝色的点表示观测到的变量,就是像素值。粉色的点表示隐藏变量,就是disparity。通常隐藏变量叫做label。node之间的link表示dependency,比如中间粉色的点只跟周围四个点和上面的蓝色的点有关。这个某点只跟周围点有关的假设就是Markov假设。这个假设使我们能够高效的求解隐藏变量。
如果用MRF来表达stereo vision,它的energy function就是
Y表示观测变量,X表示隐藏变量。i是pixel的index,j是xi相邻的node。给定一个图像Y和一些label X,这个能量方程求得了每个link的cost的和。我们的目标是找到一个label X,比如disparity map,使得这个能量方程最小化。接下来我们分开来看data cost和smoothness cost。
Datacost主要指把label xi赋值给data yi造成的cost。对于正确的匹配,datacost很低。对错误的匹配datacost就很高。常用的衡量datacost的有差值绝对值的和,SSD等。
Smoothness cost确保相邻像素有相同的label。我们需要一个函数来惩罚相邻像素有不同label的情况。常用的函数有如下几种
Loopy Belief Propagation
因为图像中有很多像素,disparity value也有很多可能,所以很难找到MRF的精确解。LBP提供了一种方法来寻找近似解,类似的方法还有graph cut, ICM.不过LBP不保证convergence。
LBP是中用来传输信息的方法,当一个node收到了所有信息的时候,它就发给相邻node一个信息。下图展示了从x1传送到x2的过程。
x1首先需要从A,B,C,D接收到信息,然后才会给x2传输信息。x2不会返回给x1信息。准确来说信息的定义是
,表示从node i发送label l的信息给node j。换言之就是node i对node j属于label l的belief。这些信息只在隐藏变量之间传递。一个完整的信息包含所有可能的label。比如node i会给node j发送如下信息
hey node j,我认为你是label 0,概率是s0
hey node j,我认为你是label 1,概率是s1
。。。
Node i记载了所有关于node j的可能性。概率的计算取决于MRF。
LBP的第一步是初始化信息。因为node要等到所有相邻node都发送信息,这就变成了一个鸡生蛋蛋生鸡的问题,因为所有node都会等待其他node发送信息,实际上谁也没有发送任何东西。为了解决这个问题,我们把所有信息都初始化成一个常数,通常是0或1.
LBP主体算法是iterative的。如同其他iterative的算法,我们可以在一定循环次数后结束,或者到energy的变化小于一个阈值。在每个iteration,信息在MRF中传递。信息传递的次序是随机的。一旦这个过程结束,我们就可以根据每个node的belief计算这个node的label。
接下来我们一个个来看信息更新,初始化,和belief的步骤,和三个不同算法sum product,max product, min sum。
用于信息更新的sum product
![msg_{i \rightarrow j}\left( l \right) = \sum\limits_{l' \in \mbox{all labels}} \left[ \begin{array}{c} exp\left(-DataCost\left(y_i,l'\right)\right) exp\left(-SmoothnessCost\left(l,l'\right)\right) \times \\ \prod\limits_{k=\left( \begin{array}{c} \mbox{neighbours of i} \\ \mbox{except j} \end{array} \right)} msg_{k\rightarrow i}\left(l'\right) \end{array} \right] msg_{i \rightarrow j}\left( l \right) = \sum\limits_{l' \in \mbox{all labels}} \left[ \begin{array}{c} exp\left(-DataCost\left(y_i,l'\right)\right) exp\left(-SmoothnessCost\left(l,l'\right)\right) \times \\ \prod\limits_{k=\left( \begin{array}{c} \mbox{neighbours of i} \\ \mbox{except j} \end{array} \right)} msg_{k\rightarrow i}\left(l'\right) \end{array} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vu7iWhgG79IQrfhPR554nP6JgR3NKIxPIrc7rmeQc08SQM_OfCBSM_-u1lojdUiphZBEwPgyE0LKqqWel-8mEVNzR1wjrqFhz0zxqIObURIdiAtG2-cCI-Sj9avvAMHNOu3irePXyghwDlj_IbqFcvGJga-vPSxkcSmk-q0uJ0-AlfNc_K9LQCJajrsp24tvZcUNtPnzfU0EFuu01lnyXptJMMwEPgcU8pY7cJnp_jZvJFoqDzz7R1YZVGhA80yQd36qaas7FHngE9UDzuzwM-EQe7sMI7nbQe989d_dkWilRLaXgw7mdMbgAZRkJIz7f8a5W7rY3I6BjpTsSwrX7uYdxjlnzT8g8StEEiW6b4JzZIeJm55mH0A1qRmHPv6LkBBO6h7EpNrPJkKwZE_mL3BH88cOyETs7hrHLQOea4cstMSLyEUJXnT5wJJJ9TWUFjKy1dUDcwhLVI8GYUh-5-a9nC1vfXg36M4MF70c-Pu_QRvZIiu8ppTKs9bI3B9odWf2DaxbIBBTJUK0A33HU2pC6i6Ax6UjwSu3iSWk1eI1HXy1iJ1NVO0_VhkEppXmYhY01qjq4rUsVVnWYLIaKPQgWSYBD5Rh-qP8AVTueu6nn681jkYM0H6hEcT9Omb5KnwaFCKDANyENg_DCafTzJBhwA1JVC1E-i2Z-adWDsfonU9dF_UURNsiVyogisBG_lpzcdfTCanLbfi_4JoPirnbTq3Y0LiPfGBb2pnhi5U3aKZn70nnPRYCwxgiK2Yqb_pNlaZuTwvpNxq4sZ=s0-d)
等式左边表示从node i发到node j,关于label l的信息。右边的y表示图像像素。这里我们遍历所有的label,在disparity map中共有15种。因为有加和,内积的计算,所以叫sum product。这个算法用于概率的计算,所以要用exp函数把data cost, smoothness cost,转换到在0到1之间的概率,这个概率越大越好。在中括号里面的是data cost, smoothness cost对于label l的所有信息的joint probability. 中括号外面的加和是对概率在变量l上的marginalization.
一个完整的信息是一个矢量
![msg_{i \rightarrow j}=\left[ \begin{array}{c} msg_{i \rightarrow j}\left(0\right)\\ msg_{i \rightarrow j}\left(1\right)\\ msg_{i \rightarrow j}\left(2\right)\\{..} \end{array} \right] msg_{i \rightarrow j}=\left[ \begin{array}{c} msg_{i \rightarrow j}\left(0\right)\\ msg_{i \rightarrow j}\left(1\right)\\ msg_{i \rightarrow j}\left(2\right)\\{..} \end{array} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vtQ4vOuOMiOxgvlYpqUYYS54orc_1G-_lfQubCioXzyDCOUe8NpvJv86DWQI_lNklTMm00TcyvI7dSYS65kZ4Q5SyDGImj1FQ6CQKzCLtW8nDCysGamy2rJp-e0vHffZ7eLja0yQmwydRXowFnr_-ckVBh9Mjbu1Op8FRBcH1SxeqtbPBD5UFLZ26qA4uX1dVh6SOIuxd0J7PKQkgEWUD1-EZwlhxbCfzp6CHLFELFL05FrjFEXto18yCCAotAyW-EHsLPkf7ILHlVcqivXqEbEaQR48fBvUXyHvh7gF_7476IkGO2M7KcZoYg-nhLBMfk6IPxQiwJMkKq33qUZyNBGXGZ9yFRYpjm7UKnbUmoCxCH1Y75KYrDUMhBYrmuknUPRVl8YTsqyNlc7iLSWziRxm2EBAPCDXEgO0GiwQxum9RrRKqDdCQpCLEE9tBmGTWUKLMnhLjV_Tna_T8UyMSUEgU=s0-d)
所以对于每个label都要遍历所有可能,复杂度就是O(L^2).
连续对概率做乘积的时候,很快就会接近0.为了避免这个情况,我们要把信息向量normalize

进行初始化的时候,所有信息的概率都设为1.每个node的belief是所有信息的乘积。

这是node i对于label l的belief。为了找到最合适的label,需要遍历所有label然后找到最高的belief。
用于信息更新的max product
sum product可以找到每个node的最佳label。但是总体来说并不一定是最优解。举例来说,假设有两个变量x,y
表格外边的是变量的marginal。如果用单独的marginal计算,我们会选择x=1, y = 0,得到P(x=1,y=0) = 0.4。但是最佳的解是p(x=0,y=0) = 0.5。我们最关心的是Joint probability。此类问题经常会在maximum a posteriori (MAP)求解中出现,因为这时我们想找到全局的最优解。max product在sum product的基础上做了一点点改变
![msg_{i \rightarrow j}\left( l \right) = \max\limits_{l' \in \mbox{all labels}} \left[ \begin{array}{c} exp\left(-DataCost\left(y_i,l'\right)\right) exp\left(-SmoothnessCost\left(l,l'\right)\right) \times \\ \prod\limits_{k=\left(\begin{array}{c} \mbox{neighours of i} \\ \mbox{except j} \end{array} \right)} msg_{k\rightarrow i}\left(l'\right) \end{array} \right] msg_{i \rightarrow j}\left( l \right) = \max\limits_{l' \in \mbox{all labels}} \left[ \begin{array}{c} exp\left(-DataCost\left(y_i,l'\right)\right) exp\left(-SmoothnessCost\left(l,l'\right)\right) \times \\ \prod\limits_{k=\left(\begin{array}{c} \mbox{neighours of i} \\ \mbox{except j} \end{array} \right)} msg_{k\rightarrow i}\left(l'\right) \end{array} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uDGrXSh_67BK5nbw8-ujjompJyvlS4Zaz84JtuJVHLbPNGZ01lsqxgCuM09cWBOotN_B0wh52E5LVln5hDkHu_K6pfdyx2ocpHUoGNHzl4lUtR79-Ji-MuIWiXLj8BPedSS3Ya8f0jfdw3Xug-VEslQ6RDyjm3KodxVDglWuq1ORsDClUjE4Sdg02pLYKYKTuNROOhgd313LDQg0EhtkysPqR4CbzpZ7RL7RXSgGGzV3wcEtzl9C9XzW7yWq8ns5npoznHOmPu5NpqoNLWFEs2vMA2TxwvKgcptWesL__BelCQWBNJbwijzxef8ALGGvFFulKAdJ1zaCkYzFZMlijU05N6VMJmHxYhSJuDft7MBcBy0lGkWWP-4LQnAI9wcsjP4u7pHODyhtw5eqTJyWpnokQppdljaPdTAsmW1EB-SC6eRTm4N0cvCeMEODzFy4pUXA4Z35cAcx3TOA9gZ7mIffAAjaVu3ZOw5ir8IJarBGWjpJZWeM54pMQ3Eiq1qNz7_mM8WCP-pHhwaUM5YVHre0uYRPVPDl0vhmGviOy54wQGKx6HrR4sFVhcPG4aFyBwvpJu8QappB3tRlMvfMxQD42OmzCAaijuo1LnpGnssovup-98cOIdLWDOR0C6mLaDvVgG8IgaLLZoeOZiw9amJp-FIio7pTYO1WxgEGK7olsyFOoO7_GklXePTheiiTgu2dZxbuRB23NkefybUHF0TgBu2JQfuJUMVcf0QSXa_uOrEkshMQG0WdHEFrIxqOz30Nm-4bV1Qabt=s0-d)
现在不再求和,而是计算marginal probability的最大值。
用来更新信息的min sum
和max sum相似,min sum也是计算每个node的max marginal,不过是在log space中。
![msg_{i \rightarrow j}\left( l \right) = \min\limits_{l' \in \mbox{all labels}} \left[ \begin{array}{c} DataCost\left(y_i,l'\right) + SmoothnessCost\left(l,l'\right) + \\ \sum\limits_{k=\mbox{neighours of i except j}} msg_{k\rightarrow i}\left(l'\right) \end{array} \right] msg_{i \rightarrow j}\left( l \right) = \min\limits_{l' \in \mbox{all labels}} \left[ \begin{array}{c} DataCost\left(y_i,l'\right) + SmoothnessCost\left(l,l'\right) + \\ \sum\limits_{k=\mbox{neighours of i except j}} msg_{k\rightarrow i}\left(l'\right) \end{array} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tUQVfwwwhkj-S5gwS4DW_kpmL7cfk-lv0ZC4snISHfKYmhRhBTqWS0z0VSaqEEY4dQgcFihFdKokewtg7pXc-ahR7NBv57AsQl3cU8GtcgIuoKMOPkipTgyhUtP26sNw8E733dgftbH_eZFl00-DVwFP83tZ1WvPAkTcEUnT26GaBkpVR9GpT_njuFLw1iVgz17_6zG-vi-tih7qHiCyzXkAOu-W8thAYNy_nSdPL7RtKTUPfRAxaipBTtseNbCjrE_jyV8MD4XnexvaZqxNbHgbbE7B0d784auN_SokEWxaDNmBudvxNKmf3WAmdDfLZ4vMwja9Q6mw-AQJk6Z-eLQa84OVvNtioVVA9wkgZr-xyvFAYu9HvAzA4z3EQvEbgA-c44dkhtXo7-0JGFS9rEQNnSqqpN8iYx88CrpmKFnQ5U4nGo0bj3rjxsDVEIYH23i9_7O4xvj4sx79Y076KB6hN0MNMecIDs_SS9n-mefxp_A1QY-2c0pkgKU2SZ-pdk7wZhK7F1lqL_yFSedCsubuca7py7Ga2ZjnD-0z-tAWrfWiWvABdnFCPxKvegOGvyvp5oHHoLqvjoUnFW-nBswXuMOOcNp-NQIPDn=s0-d)
这是个求解最小值的问题。在初始化的时候所有的数值都是0. 这时的belief是
用于信息更新的sum product
等式左边表示从node i发到node j,关于label l的信息。右边的y表示图像像素。这里我们遍历所有的label,在disparity map中共有15种。因为有加和,内积的计算,所以叫sum product。这个算法用于概率的计算,所以要用exp函数把data cost, smoothness cost,转换到在0到1之间的概率,这个概率越大越好。在中括号里面的是data cost, smoothness cost对于label l的所有信息的joint probability. 中括号外面的加和是对概率在变量l上的marginalization.
一个完整的信息是一个矢量
所以对于每个label都要遍历所有可能,复杂度就是O(L^2).
连续对概率做乘积的时候,很快就会接近0.为了避免这个情况,我们要把信息向量normalize
进行初始化的时候,所有信息的概率都设为1.每个node的belief是所有信息的乘积。
这是node i对于label l的belief。为了找到最合适的label,需要遍历所有label然后找到最高的belief。
用于信息更新的max product
sum product可以找到每个node的最佳label。但是总体来说并不一定是最优解。举例来说,假设有两个变量x,y
P(x,y) | x=0 | x=1 | |
y=0 | 0.5 | 0.4 | P(y=0) = 0.9 |
y=1 | 0.1 | 0.3 | P(y=1) = 0.4 |
P(x=0) = 0.6 | P(x=1) = 0.7 |
现在不再求和,而是计算marginal probability的最大值。
用来更新信息的min sum
和max sum相似,min sum也是计算每个node的max marginal,不过是在log space中。
这是个求解最小值的问题。在初始化的时候所有的数值都是0. 这时的belief是
不过因为我们其实在找最小值,称它为cost更合适。
在这些方法中,min sum是最方便实现的,它没有exp函数,只有加和。如果用sum product的话,就要在exp里面加上scaling来避免underflow。eg. exp(-DataCost(…)*scaling) * exp(-SmoothnessCost(..)*scaling), scaling是 0 到1之间的数.
No comments:
Post a Comment